LubwiG-

MAXIMILIANS-
UNIVERSITAT
MONCHEN

The implementation of WiT TFind

Presentation Wittgenstein Scholarship 2014

Florian Fink

Centrum fiir Informations- und Sprachverarbeitung (CIS) LMU

6. Juni 2014

Florian Fink The implementation of WiTTFind

1/14

LMU
Wittfind

The tool Wittfind (wf) is part of the Wittgenstein Advanced Search Tools
(WAST).
e |t acts as search-backend for other tools of WAST.

e |t is written entirely in C++ and uses a simple XML-DOM parser
called pugixml.

e |t searches over any compatible files using both external lexical
resources and embedded part-of-speech tags.

e [t finds phrases in sentences using graphs that combine different
matching algorithms.

e It shows the results of the search within the original document.

Florian Fink The implementation of WiTTFind 2/14

LubwiG-

’LMU
Tools of wf

—_
dictionaries

displayer

wf is split into 3 parts:

e wf_server implements the search and handles the background
resources.

e wf client creates search-graphs and controls the server.
e wf_display handles the presentation of the search results.

Florian Fink The implementation of WiTTFind

3/14

LubwiG-

MAXIMILIANS:
UNIVERSITAT
MONCHEN

wf _server

The wf_server handles all background resources used by the program and
searches the file index.

1. applies preprocessing to the file index and adds all available
information to the token in order to speed up the lookup.

2. accepts search graphs from the client
3. searches the given file(s) with the search graph

4. returns the results back to the client

Florian Fink The implementation of WiTTFind 4/

14

’LMU

Representation of search graphs

<nachdenken>

Internally search graphs are represented as a set of states that are
connected with transitions. Each search graph has on starting state and
one final state. If a final state is encountered during the search, a hit is
reported back to the client.

Florian Fink The implementation of WiTTFind 5/14

LubwiG-

MAXIMILIANS:
UNIVERSITAT
MONCHEN

Transitions of the search graph

Transitions represent links from one state to another. If a transitions
matches the current token it return the target state of the transition. There
are different transitions that implement different matching algorithms:

e algorithms using the information of the background dictionaries
> lematized matching
» matching on morphological forms
» matching on semantic forms

e algorithms using the embedded information of the text

> regular expression matching on the token
> simple string matching

» matching on the embedded pos tags

Florian Fink The implementation of WiTTFind 6/14

LMU

Searching

The search algorithm simply iterates over token and the states in parallel

using a stack of the active states. It borrows from algorithms that are used
to traverse NFA's.

1. At first the initial state is pushed onto the stack.

2. The current state is popped from the stack and the next token is read.

3. The target state of every transition of the popped state that matches
the current token is pushed onto the stack.

4. If the final state lies on top of the stack, a match is reported.

5. If the stack is empty nothing could be found and the search starts
over.

Florian Fink The implementation of WiTTFind

UDWIG-

u
MAXIMILIANS-
UNIVERSITAT
MONCHEN

Example of the search

ich dachte daran

<denken> <dariiber>

Florian Fink The implementation of WiTTFind 8/14

DWIG-

w

HAXIMILIANS
LMU| |vesrss

MONCHEN

wf client

The main purpose of the wf_client is the communication with
wf_server.

e constructs search-graphs
e sends search-graphs to the server

e recieves the search results from the server

Florian Fink The implementation of WiTTFind 9/14

LubwiG-

MAXIMILIANS-
UNIVERSITAT
MONCHEN

Flat queries

WITTFind erdenkt|sagt WiTTFind-Suche

In order to provide a simple interface to searching without the need to
explicitly constructing the search graphs, wf _client is able to transform
flat queries to search-graphs before sending them to the server.

Florian Fink The implementation of WiT TFind 10/14

LMU

Transformation of flat queries

The algorithm used for the transformation are borrowed from algorithms
that transform regular expressions to NFA's, which are used by simple
search algorithms of regular expressions.

e The current algorithm is based on the Thompson construction, that
imposes a lot of superfluous empty transitions.

¢ Another (optional) algorithm uses the Glushkov construction, which
results in less transitions.

Florian Fink The implementation of WiTTFind 11/14

LubwiG-

MAXIMILIANS:
UNIVERSITAT
MONCHEN

wf _display

The last tool in the pipeline is wf_display. It is used to mark the matches
in the matching sentences. The tool just attaches some information to the
original document without changing any other information in it and sends
it as answer back to the user.

Florian Fink The implementation of WiTTFind 12/14

LubwiG-

MAXIMILIANS:
UNIVERSITAT
MONCHEN

Conclusion

e The search is implemented like a simple algorithm for regular
expressions search on the basis of token.

e Instead of character-based comparison, different token matching
algorithms can be used.

e The server preprocesses the file-index for faster access.
e The client constructs search-graphs and controls the server.

e The displayer displays the results in the original file.

Florian Fink The implementation of WiTTFind 13/14

Thank y0u!

«O» «F»r « N

